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1. Contribution
• We present a novel component analysis which

can perform joint reconstruction and extrac-
tion of a latent space with first order Markov
dependencies.

• We show how, by incorporating a shape model,
we can perform joint alignment, i.e. facial
landmarks localization, and feature extraction
useful for analysis of facial events. Due to
the incorporation of the motion model the ex-
tracted dynamic latent features are robust to
geometric transformations.

• We show that the latent features can be used
for temporal alignment of facial events.

3. Method Overview
Given a video sequence with the corresponding
bounding box and a shape model, the method
performs jointly facial landmarks localization and
spatio-temporal facial behaviour analysis

by solving the following optimization problem

min
U,V,P

f = ‖X(W(P))−UV‖2F + λtr[VLVT ]

s.t. UTU = I
(1)

The solution is given in an alternating manner con-
sisting of two steps

Fix P and minimize with respect to {U,V}
In this step we have a current estimate of the shape
parameters matrix P and thus the data matrix
X(W(P)). In order to find the updates U and V we
follow an alternative optimization framework where
we fix V and find U and then fixing U and finding
V

Updating U Given V the update for U is given
by the skinny singular value decomposition (SSVD)
of X(W(P))VT [1]

Updating V Given U the update for V is given
by

V = UTX(W(P))(I− λL)−1 (2)

Fix {U,V} and minimize with respect to P
In this step we have a current estimation of the ba-
sis U and the latent features V and aim to esti-
mate the motion parameters P = [p1, . . . ,pN ] for
each frame, so that the Frobenius norm between the
warped frames and the templates UV is minimized.
This is achieved by using the efficient Inverse Com-
positional (IC) Image Alignment algorithm [2].

2. Model
For deriving the ARCA we consider a probabilistic
generative model which (1) captures time-variant la-
tent features and (2) explains data generation.
Assuming a generative model of the form

xi = Uvi + ei (3)

where U ∈ RF×K is a subspace of K basis, then for
capturing the time-variant correlations we consider
an Autoregressive model
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for the latent variables vi as vi|vi−1, . . . ,v1 ∼
N (vi|φvi−1, I) with v1 ∼ N (v1|0, (1− φ2)−1).
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4. Results in Spatio-Temporal Behaviour Analysis
Deterministic Slow Feature Analysis
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Application of SFA and ARCA on a video display-
ing a subject performing: (a) Blink (AU 45) and
(b) Tongue Show (AU 19). The red marks indicate
the ground truth moments at which the FAU’s tem-
poral phases change.

Comparison of ARCA (blue) and SFA (green) with
the annotated ground truth (red) on a spontaneous
video sequence from UNS database. The subject
performs an FAU with multi-temporal phases (ON-
Onset, AP-apex, OF-offset, N-neutral).
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Aligning the AU10 performed by two different subjects. (a)Original features (b)Aligned features (c) Align-
ment path. (d) Frames detected form the ARCA method (second row) and CTW method (third row)

5. Results in Landmark Points Localization

Mean error over all videos per iteration and compar-
ison of the fitting accuracy of ARCA with methods
trained on manual annotations for MMI.

Indicative example of the subspace evolution on an
MMI video. Top row: Initial subspace. Bottom row:
Final subspace after five iterations


