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Problem Statement

We propose Active Pictorial Structures (APS), a novel generative deformable

model for object alignment in-the-wild that combines the best of two worlds:
- Pictorial Structures (PS)
Graph-based modeling using Gaussian Markov Random Field (GMRF).
- Active Appearance Models (A AMs)

Weighted inverse-compositional Gauss-Newton with fixed Jacobian and Hessian.

Contributions

- It is more accurate to model the appearance using GMRF rather than PCA.
- APS allow to define any graph structure; not only tree. We show that a tree-

based shape model, as in PS, limits the model’s descriptiveness and hampers the
performance.

- We employ the spring-like shape model of PS as a shape prior in the Gauss-

Newton optimization which makes the model more robust.
- We propose the best performing weighted inverse compositional

Gauss-Newton algorithm with fixed Jacobian and Hessian. Its computational cost

reduces to a single matrix multiplication per iteration and is independent of the

employed graph structure.

(Gaussian Markov Random Field (GMRF)
A GMREF is based on a graph G = (V, E), where the vertexes stand for random

variables and the edges impose statistical constraints on these random variables.
[t formulates the precision matrix (Q of the data as a block-sparse matrix that has

zeros at the blocks that correspond to disjoint vertexes, i.e.

Qij — Ov\V/Za] : (U@,Uj) ¢ b
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Active Pictorial Structures

APS consist of three GMRF-based models:

1) Shape model: SVD on the inverse of the precision matrix Q® based on an undirected graph G° = (V?*, E¥).
S(s,p) = s+ Up denotes a generated shape instance
2) Part-based Apperance model: Mean a and precision matrix Q% based on an undirected graph G* = (V*, E%).
A(S(8,p)): an appearance vector (concatenation of features from patches)
3) Deformation prior: Precision matrix Q% based on a directed graph G = (V*, E%).

Cost tunction consists of two Mahalanobis distances:
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Advantages/Disadvantages of APS

+The sums of the PS cost function become matrix multiplications at the APS cost function.
+The deformation prior makes APS very robust to bad initializations.

+ Weighted 1C with fixed Jacobian and Hessian is close to real-time.

+'The complexity is independent of the selected graph structure.

+Many existing models can be derived from APS by changing the structure of Q.

= Q" is very large and requires a lot of memory.

The Ap of the p < p — Ap update at each iteration is a matrix multiplication (Hessian and Jacobian are fixed):

Ap=H '"[Js Q°(A(S(s,p)) — a) + Hsp]
Pictorial Structures

PS learn a patch expert for the appearance of each part of an object and model its shape using spring-like

Experiments
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connections between landmarks based on a tree structure.

. T 1 d1! jsd \—1 d
argmin Y [A(&) — pf]” (597 AW@) —pi+ Y (L= —pl] (257 6 -4 — pd]
+Globally optimal solution; no need for initialization.
=(Graph can only be a tree.
= Appearance of each part is independent.
=The global optimum does not always correspond to the best shape in reality, because the tree

structure restricts too much the range of possible realizable shape configurations.

=Very far from being real-time.

Active Appearance Models

AAMs are generative models that learn a parametric statistical shape and appearance model using PCA.
arg min [[AOW(S, p)) —a — U\
P,
+ Accurate optimization using inverse compositional (IC) Gauss-Newton.
+ A AMs with holistic appearance and dense features are very accurate.
=Shape and appearance are modelled using PCA.
= Very sensitive to bad initializations.
= Alternating IC is very accurate but slow.
=Project-Out 1C is very fast but inaccurate.

- SIF'T, Training: LFPW trainset, Testing: LEFPW testset + AFW, Initialization with DPM bboxes

- Comparison with other inverse compositional with fixed Jacobian and Hessian (POIC):

DPM-AAM-POIC: G. Tzimiropoulos and M. Pantic, "Gauss-Newton deformable part models for face alignment in-the-wild", CVPR, 2014.
BAAM-POIC: J. Alabort-i-Medina and S. Zafeiriou, "Bayesian Active Appearance Models", CVPR 2014.

AAM-POIC: E. Antonakos, et al., "Feature-based lucas-kanade and active appearance models", IEEE TIP, 2015.

- Comparison with state-of-the-art:

GN-DPM: G. Tzimiropoulos and M. Pantic, "Gauss-Newton deformable part models for face alignment in-the-wild", CVPR, 2014.
DPM / PS: X. Zhu and D. Ramanan, "Face detection, pose estimation, and landmark localization in-the-wild", CVPR, 2012.

SIFT-AAM: E. Antonakos, et. al, "Feature-based lucas-kanade and active appearance models", IEEE TIP, 2015.

SDM: X. Xiong and F.De la Torre, “Supervised descent method and its applications to face alignment”, CVPR, 2013.
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