# Active Pictorial Structures

# Epameinondas Antonakos, Joan Alabort-i-Medina, Stefanos Zafeiriou

# Problem Statement

We propose Active Pictorial Structures (APS), a novel generative deformable model for object alignment in-the-wild that combines the best of two worlds:

- Pictorial Structures (PS)
- Graph-based modeling using Gaussian Markov Random Field (GMRF).
- Active Appearance Models (AAMs)
- Weighted inverse-compositional Gauss-Newton with fixed Jacobian and Hessian.

### Contributions

- It is more accurate to model the appearance using GMRF rather than PCA.
- APS allow to define any graph structure; not only tree. We show that a treebased shape model, as in PS, limits the model's descriptiveness and hampers the performance.
- We employ the spring-like shape model of PS as a shape prior in the Gauss-Newton optimization which makes the model more robust.
- We propose the best performing weighted inverse compositional Gauss-Newton algorithm with **fixed** Jacobian and Hessian. Its computational cost reduces to a single matrix multiplication per iteration and is independent of the employed graph structure.

# Gaussian Markov Random Field (GMRF)

A GMRF is based on a graph G = (V, E), where the vertexes stand for random variables and the edges impose statistical constraints on these random variables. It formulates the precision matrix  $\mathbf{Q}$  of the data as a block-sparse matrix that has zeros at the blocks that correspond to disjoint vertexes, i.e.

$$\mathbf{Q}_{ij} = \mathbf{0}, \forall i,j: (v_i,v_j) \notin E$$
 Graph Data PCA GMRF 
$$\mathbf{Z}_{1}$$
 
$$\mathbf{Z}_{3}$$
 
$$\mathbf{Z}_{2}$$
 
$$\mathbf{U}_{12}\mathbf{D}_{12}\mathbf{U}_{12}^{T}$$
 
$$\mathbf{Z}_{23}$$
 
$$\mathbf{U}_{23}\mathbf{D}_{23}\mathbf{U}_{23}^{T}$$



#### Active Pictorial Structures

APS consist of three GMRF-based models:

- 1) Shape model: SVD on the inverse of the precision matrix  $\mathbf{Q}^s$  based on an undirected graph  $G^s = (V^s, E^s)$ .  $S(\bar{\mathbf{s}}, \mathbf{p}) = \bar{\mathbf{s}} + \mathbf{U}\mathbf{p}$  denotes a generated shape instance
- 2) Part-based Apperance model: Mean  $\bar{\mathbf{a}}$  and precision matrix  $\mathbf{Q}^a$  based on an undirected graph  $G^a = (V^a, E^a)$ .  $\mathcal{A}(\mathcal{S}(\bar{\mathbf{s}},\mathbf{p}))$ : an appearance vector (concatenation of features from patches)
- 3) Deformation prior: Precision matrix  $\mathbf{Q}^d$  based on a directed graph  $G^d = (V^d, E^d)$ .

Cost function consists of two Mahalanobis distances:

$$\underset{\mathbf{p}}{\operatorname{arg\,min}} \| \mathcal{A}(\mathcal{S}(\bar{\mathbf{s}}, \mathbf{p})) - \bar{\mathbf{a}} \|_{\mathbf{Q}^{a}}^{2} + \| \mathcal{S}(\bar{\mathbf{s}}, \mathbf{p}) - \bar{\mathbf{s}} \|_{\mathbf{Q}^{d}}^{2} =$$

$$= \underset{\mathbf{p}}{\operatorname{arg\,min}} \underbrace{\left[ \mathcal{A}(\mathcal{S}(\bar{\mathbf{s}}, \mathbf{p})) - \bar{\mathbf{a}} \right]^{T} \mathbf{Q}^{a} \left[ \mathcal{A}(\mathcal{S}(\bar{\mathbf{s}}, \mathbf{p})) - \bar{\mathbf{a}} \right]}_{\text{Part-based Appearance cost}} + \underbrace{\left[ \mathcal{S}(\bar{\mathbf{s}}, \mathbf{p}) - \bar{\mathbf{s}} \right]^{T} \mathbf{Q}^{d} \left[ \mathcal{S}(\bar{\mathbf{s}}, \mathbf{p}) - \bar{\mathbf{s}} \right]}_{\text{Deformation cost}}$$

The  $\Delta \mathbf{p}$  of the  $\mathbf{p} \leftarrow \mathbf{p} - \Delta \mathbf{p}$  update at each iteration is a matrix multiplication (Hessian and Jacobian are fixed):

$$\Delta \mathbf{p} = \mathbf{H}^{-1} [\mathbf{J}_{\bar{\mathbf{a}}}^T \mathbf{Q}^a \left( \mathcal{A}(\mathcal{S}(\bar{\mathbf{s}}, \mathbf{p})) - \bar{\mathbf{a}} \right) + \mathbf{H}_{\mathcal{S}} \mathbf{p}]$$

### Pictorial Structures

PS learn a patch expert for the appearance of each part of an object and model its shape using spring-like connections between landmarks based on a tree structure.

$$\underset{\mathbf{s}}{\operatorname{arg\,min}} \sum_{i=1}^{n} \left[ \mathcal{A}(\boldsymbol{\ell}_i) - \boldsymbol{\mu}_i^a \right]^T (\boldsymbol{\Sigma}_i^a)^{-1} \left[ \mathcal{A}(\boldsymbol{\ell}_i) - \boldsymbol{\mu}_i^a \right] + \sum_{i,j:v_i,v_j \in E} \left[ \boldsymbol{\ell}_i - \boldsymbol{\ell}_j - \boldsymbol{\mu}_{ij}^d \right]^T (\boldsymbol{\Sigma}_{ij}^d)^{-1} \left[ \boldsymbol{\ell}_i - \boldsymbol{\ell}_j - \boldsymbol{\mu}_{ij}^d \right]$$

- -Appearance of each part is independent.
- +Globally optimal solution; no need for initialization.
  - -Graph can only be a tree.
  - The global optimum does not always correspond to the best shape in reality, because the tree structure restricts too much the range of possible realizable shape configurations.
  - -Very far from being real-time.

# Active Appearance Models

AAMs are generative models that learn a parametric statistical shape and appearance model using PCA.

$$\underset{\mathbf{p}, \boldsymbol{\lambda}}{\operatorname{arg\,min}} \|\mathcal{A}(\mathcal{W}(\bar{\mathbf{s}}, \mathbf{p})) - \bar{\mathbf{a}} - \mathbf{U}^a \boldsymbol{\lambda}\|^2$$



- Accurate optimization using inverse compositional (IC) Gauss-Newton.
- +AAMs with holistic appearance and dense features are very accurate.
- -Shape and appearance are modelled using PCA.
- -Very sensitive to bad initializations.
- -Alternating IC is very accurate but slow.
- -Project-Out IC is very fast but inaccurate.

# Advantages/Disadvantages of APS

The sums of the PS cost function become matrix multiplications at the APS cost function.

IEEE 2015 Conference on

Computer Vision and Pattern

- The deformation prior makes APS very robust to bad initializations.
- → Weighted IC with fixed Jacobian and Hessian is close to real-time.
- The complexity is independent of the selected graph structure.
- $\bullet$  Many existing models can be derived from APS by changing the structure of  $\mathbf{Q}^a$ .
- $\mathbf{Q}^a$  is very large and requires a lot of memory.

# Experiments



- SIFT, Training: LFPW trainset, Testing: LFPW testset + AFW, Initialization with DPM bboxes
- Comparison with other inverse compositional with fixed Jacobian and Hessian (POIC):

DPM-AAM-POIC: G. Tzimiropoulos and M. Pantic, "Gauss-Newton deformable part models for face alignment in-the-wild", CVPR, 2014. BAAM-POIC: J. Alabort-i-Medina and S. Zafeiriou, "Bayesian Active Appearance Models", CVPR 2014.

AAM-POIC: E. Antonakos, et al., "Feature-based lucas-kanade and active appearance models", IEEE TIP, 2015.

- Comparison with state-of-the-art:

GN-DPM: G. Tzimiropoulos and M. Pantic, "Gauss-Newton deformable part models for face alignment in-the-wild", CVPR, 2014.

SIFT-AAM: E. Antonakos, et. al, "Feature-based lucas-kanade and active appearance models", IEEE TIP, 2015.

DPM/PS: X. Zhu and D. Ramanan, "Face detection, pose estimation, and landmark localization in-the-wild", CVPR 2012.

SDM: X. Xiong and F.De la Torre, "Supervised descent method and its applications to face alignment", CVPR, 2013.

